Skip to Content

Engineering Trade-offs: Eventual Consistency in Practice

Engineering Trade-offs: Eventual Consistency in Practice

Modern applications don’t run on a single database or monolithic backend anymore. They run on event-driven, distributed systems. 
͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­͏     ­
Forwarded this email? Subscribe here for more

Imagine a ride-sharing app that shows a driver’s location with a few seconds of delay. Now, imagine if the entire app refused to show anything until every backend service agreed on the perfect current location. No movement, no updates, just a spinning wheel. 

That’s what would happen if strong consistency were always preferred in a distributed system.

Modern applications (social feeds, marketplaces, logistics platforms) don’t run on a single database or monolithic backend anymore. They run on event-driven, distributed systems. Services publish and react to events. Data flows asynchronously, and components update independently. This decoupling unlocks flexibility, scalability, and resilience. However, it also means consistency is no longer immediate or guaranteed.

This is where eventual consistency becomes important.

Some examples are as follows:

  • A payment system might mark a transaction as pending until multiple downstream services confirm it.

  • A feed service might render posts while a background job deduplicates or reorders them later.

  • A warehouse system might temporarily oversell a product, then issue a correction as inventory updates sync across regions.

These aren’t bugs but trade-offs. 

Eventual consistency lets each component do its job independently, then reconcile later. It prioritizes availability and responsiveness over immediate agreement.

This article explores what it means to build with eventual consistency in an event-driven world. It breaks down how to deal with out-of-order events and how to design systems that can handle delays.

What is Eventual Consistency?...

User's avatar

Continue reading this post for free in the Substack app

 
Like
Comment
Restack
 

© 2025 ByteByteGo
548 Market Street PMB 72296, San Francisco, CA 94104
Unsubscribe

Get the appStart writing


by "ByteByteGo" <bytebytego@substack.com> - 11:37 - 15 May 2025